Laser desorption/ionization mass spectrometry on porous silicon for metabolome analyses: influence of surface oxidation.
نویسندگان
چکیده
Laser desorption/ionization mass spectrometry (LDI-MS) on porous silicon is a promising analytical strategy for the rapid detection of metabolites in biological matrices. We show that both oxidized and unoxidized porous silicon surfaces are useful in detecting protonated/deprotonated molecules from compounds when analyzed in mixtures. We demonstrate the feasibility of using this technique for the simultaneous detection of multiple analytes using a synthetic cocktail of 30 compounds commonly associated with prokaryotic and eukaryotic primary metabolism. The predominantly detected species were the protonated molecules or their sodium/potassium adducts in the positive-ion mode and the deprotonated molecules in the negative-ion mode, as opposed to fragments or other adducts. Surface oxidation appears to influence mass spectral responses; in particular, in the mixture we studied, the signal intensities of the hydrophobic amino acids were noticeably reduced. We show that whilst quantitative changes in individual analytes can be detected, ion suppression effects interfere when analyte levels are altered significantly. However, the response of most analytes was relatively unaffected by changes in the concentration of one of the analytes, so long as it was not allowed to dominate the mixture, which may limit the dynamic range of this approach. The differences in the response of the analytes when analyzed in mixtures could not be accounted for by considering their gas-phase and aqueous basicities alone. The implications of these findings in using the technique for metabolome analyses are discussed.
منابع مشابه
Porous silicon as a versatile platform for laser desorption/ionization mass spectrometry.
Desorption/ionization on porous silicon mass spectrometry (DIOS-MS) is a novel method for generating and analyzing gas-phase ions that employs direct laser vaporization. The structure and physicochemical properties of the porous silicon surfaces are crucial to DIOS-MS performance and are controlled by the selection of silicon and the electrochemical etching conditions. Porous silicon generation...
متن کاملHigh surface area of porous silicon drives desorption of intact molecules.
The surface structure of porous silicon used in desorption/ionization on porous silicon (DIOS) mass analysis is known to play a primary role in the desorption/ionization (D/I) process. In this study, mass spectrometry and scanning electron microscopy (SEM) are used to examine the correlation between intact ion generation with surface ablation and surface morphology. The DIOS process is found to...
متن کاملAffinity mass spectrometry from a tailored porous silicon surface.
The development of chemically stable porous silicon (pSi) materials for DIOS (Desorption/Ionization on Silicon) mass spectrometry, covalent linkers cleaved in the DIOS laser pulse, and efficient methods for bond formation to immobilized species, allows for on-chip affinity purification and mass detection.
متن کاملLaser desorption/ionization on porous silicon mass spectrometry for accurately determining the molecular weight distribution of polymers evaluated using a certified polystyrene standard.
Desorption/ionization on porous silicon-mass spectrometry (DIOS-MS) is a novel soft ionization MS technique that does not require any matrix reagent, ideally resulting in fewer obstructive peaks in the lower mass region. In this study, the etching conditions of porous silicon spots as an ionization platform of DIOS-MS were investigated for determining the molecular weight distribution (MWD) of ...
متن کاملCleavable linkers for porous silicon-based mass spectrometry.
Desorption/ionization on silicon mass spectrometry (DIOSMS) uses porous silicon (pSi) to generate gas-phase ions of small (< 3000 Da) molecules without a matrix by using standard MALDI (matrix-assisted laser desorption/ionization) instrumentation. The unique laser desorption/ionization surface properties of DIOSMS allow for the simultaneous detection of a broad range of small molecules as their...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Rapid communications in mass spectrometry : RCM
دوره 21 13 شماره
صفحات -
تاریخ انتشار 2007